Journal of Organometallic Chemistry, 441 (1992) 355-362 Elsevier Sequoia S.A., Lausanne JOM 23009

Synthesis of phenyl(perfluoroorgano)mercury derivatives $C_6H_5Hg(R_f)$ [$R_f = C_nF_{2n+1}$ (n = 1-4 or 6) or C_6F_5] by the reactions of bis(perfluoroorgano)cadmium compounds with phenylmercury chloride

Hamid Layeghi, Dieter Naumann and Wieland Tyrra

Institut für Anorganische Chemie, Universität Köln, Greinstr. 6, W-5000 Köln 41 (Germany) (Received May 5, 1992)

Abstract

The mixed phenyl(perfluoroorgano)mercury derivatives $C_6H_5Hg(R_f) [R_f = C_nF_{2n+1} (n = 1-4 \text{ or } 6), C_6F_5]$ have been prepared by reactions of C_6H_5HgCl with $Cd(R_f)_2$ compounds, and their ¹⁹F NMR, ¹⁹⁹Hg and (in some cases) ¹³C NMR spectra and mass spectra recorded.

Introduction

Although organomercury compounds have been known since 1853 [1] and perfluoroorganomercury derivatives since 1949 [2] there have been few reports of the synthesis and properties of mixed phenyl(perfluoroorgano)mercury derivatives, although $C_6H_5HgCF_3$, 3-FC₆H₄HgCF₃, 4-FC₆H₄HgCF₃ [3-5], $C_6H_5HgC_6F_5$ [6,7] and $C_6H_5HgC_8F_{17}$ have been made [8].

Several methods for the preparation of perfluoroorganomercury compounds have been described in the literature. Compounds of the type $Hg(R_f)_2$ and HgR_fI can be obtained by the thermal or electrochemical reaction of the corresponding perfluoroiodoalkane with elemental mercury or amalgams [2,9–12].

 $Hg + R_f I \longrightarrow Hg(R_f)I + Hg(R_f)_2 + HgI_2$

Thermal decarboxylation of the corresponding perfluorocarboxylates yields $Hg(R_f)_2$ [13–15], $C_6H_5HgCF_3$ [15] and $RHgC_6F_5$ (R = CH₃, C_6H_5 , 4-CH₃C₆H₄, 4-CH₃OC₆H₄) [14].

 $\begin{array}{rcl} \text{Hg}(\text{OCOR}_{f})_{2} & \longrightarrow & \text{Hg}(\text{R}_{f})_{2} + 2\text{CO}_{2} \\ \text{C}_{6}\text{H}_{5}\text{Hg}\text{OCOCF}_{3} & \longrightarrow & \text{C}_{6}\text{H}_{5}\text{Hg}\text{CF}_{3} + \text{CO}_{2} \end{array}$

Correspondence to: Professor D. Naumann.

Addition of HgF_2 to perfluoroolefins also yields bis(perfluoroalkyl)mercury derivatives [16], *e.g.*

 $HgF_2 + 2CF_2 = CFCF_3 \longrightarrow Hg[CF(CF_3)_2]_2$

There is disagreement about the results of direct fluorination of dimethylmercury: Liu and Lagow [17] reported the preparation of $Hg(CF_3)_2$ by reaction of $Hg(CH_3)_2$ with elemental fluorine whereas Naumann and Lange [18] obtained only CH_3HgF and CH_3F under similar conditions. $C_6H_5HgCF_3$ can also be made by treatment of $C_6H_5HgCBr_3$ with C_6H_5HgF [19].

The plasmachemical reactions of elemental mercury or mercury dihalides with trifluoromethyl radicals yield bis(trifluoromethyl)mercury and trifluoromethylmercury halides [20,21]. For the preparation of aryl(perfluoroorgano)mercury derivatives several routes based on ligand exchange reactions have been reported. The reactions of HgAr₂ with Hg(CF₃)I gave the corresponding ArHgCF₃ derivative in *ca*. 70% yield [3–5].

In the same manner the series $Hg(R_f)X$ ($R_f = n - C_4F_9$, $n - C_6F_{13}$, $n - C_8F_{17}$; $X = R_f$, Cl, Br, I, NO₃, OCOCH₃, OCOCF₃) was obtained by reactions of mercury salts with Mg(R_f)I, the mixed organo(perfluoroorgano)mercury derivatives $C_6H_5HgC_8F_{17}$, $C_2H_5HgC_8F_{17}$ and $C_2H_5HgC_4F_9$ were also produced [8].

Perfluoroorganomercury derivatives with secondary and tertiary perfluoroalkyl groups can also be obtained from the reactions of intermediately-generated perfluoroalkyl-potassium or -caesium compounds with mercury salts [22,23].

In continuation of our studies on polar perfluoroorgano group transfer reactions with bis(perfluoroorgano)cadmium compounds [24–26] we now report on our investigations of the system $C_6H_5HgCl/Cd(R_f)_2$.

Results and discussion

According to Pearson's HSAB concept [27] organomercury cations can be classified as soft Lewis acids. It has been shown that in polar perfluoroorgano group transfer reactions R_f groups react preferentially with soft Lewis acids and should therefore be classified as soft Lewis bases [24–26,28].

In terms of our view of the nature of the polar perfluoroorgano group transfer [28] it is advantageous when the species that is to be perfluoroorganylated forms a soft cation in solution, and so it is necessary to measure the molar conductivity in various aprotic organic solvents in advance. Ionic equilibria involving $Cd(R_f)_2$ complexes are known in many aprotic basic solvents such as CH_3CN and dimethyl-formamide (DMF) [26].

The chloride C_6H_5HgCl shows the greatest molar conductivity in pyridine (Table 1). In keeping with this, it reacts most rapidly with $Cd(R_f)_2$ complexes in pyridine:

 $2C_6H_5HgCl + Cd(R_f)_2 \cdot 2D \longrightarrow 2C_6H_5HgR_f + CdCl_2 + 2D$

 $(R_f = C_n F_{2n+1} \ (n = 1-4 \text{ or } 6), \ C_6 F_5; \ D = CH_3 CN, \ DMF, \ none).$ These results clearly demonstrate that the existence of ionic equilibria in solution facilitates the exchange reaction.

$$C_{6}H_{5}HgCl \longrightarrow C_{6}H_{5}Hg^{+}+Cl^{-}$$

$$Cd(R_{f})_{2} \cdot 2D \longrightarrow [Cd(R_{f}) \cdot 2D]^{+}+R_{f}^{-}$$

Solvent	Molar conductivity $(\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$	Concentration $(mol 1^{-1})$	
Chana		1.25.10 ⁻⁴	
Glyme	0.01	1.25 10	
CH ₂ Cl ₂	0.04	$1.45 \cdot 10^{-4}$	
CH ₃ CN	0.05	$1.20 \cdot 10^{-4}$	
THF	0.05	$1.30 \cdot 10^{-4}$	
DMSO	0.16	$1.04 \cdot 10^{-4}$	
Acetone	0.84	$1.17 \cdot 10^{-3}$	
DMF	1.92	9.90·10 ⁻⁵	
Pyridine	5.45	$1.10 \cdot 10^{-4}$	

.e

Molar conductivity of C_cH_cHgCl in various solvents at 21°C

Table 1

From the reaction mixtures in pyridine, $C_6H_5HgCF_3$, $C_6H_5HgC_2F_5$, $C_6H_5HgC_3F_7$ and $C_6H_5HgC_6F_5$ were isolated as colourless crystalline or waxy solids. Although the reactions in the case of higher perfluoroalkyl groups proceeded very selectively in pyridine it was impossible to isolate the pure higher phenyl(perfluoroalkyl)mercury derivatives from the reaction mixtures.

Since all attempts to isolate $C_6H_5HgC_4F_9$ and $C_6H_5HgC_6F_{13}$ from reaction mixtures in pyridine, DMF and dimethyl sulphoxide (DMSO) failed, acetone was used as a low boiling solvent. In contrast to $Cd(C_nF_{2n+1})_2 \cdot 2D$ (n = 1-3) the higher perfluoroalkylcadmium compounds do not decompose in acetone solution to give R_fH , and C_6H_5HgCl shows a significant molar conductivity in this solvent (Table 1). From reactions in acetone, $C_6H_5HgC_4F_9$ and $C_6H_5HgC_6F_{13}$ were isolated as yellow oils, which gave waxy white solids after repeated sublimation.

All the compounds were characterized by mass spectroscopy, ¹⁹F, ¹⁹⁹Hg and (in some cases) ¹³C NMR spectra, and by fluorine analysis.

The mass spectra of $C_6H_5HgR_f$

Table 2

The mass spectra of all the compounds show a common fragmentation pattern (see Table 2). The spectra are dominated by the high intensity peaks of the

	R _f							
	CF ₃	C ₂ F ₅	C ₃ F ₇	C ₄ F ₉	C ₆ F ₁₃	C ₆ F ₅		
$\overline{\text{Hg}(R_f)_2^+}$	_	_	-	_	_	5.0		
$C_6H_5H_g(R_f)^+$	77.9	86.3	68.0	51.6	11.7	100.0		
$(C_{6}H_{5})_{2}Hg^{+}$	1.3	2.6	0.9	2.1	1.3	12.2		
$C_6H_5Hg^+$	100.0	100.0	100.0	100.0	100.0	6.0		
$Hg(R_f)^+$	-	-	_	0.5	1.1	-		
Hg ⁺	-	13.4	7.0	4.9	2.6	6.0		
C ₅ H ₅ ⁺	7.9	35.2	26.8	16.4	5.7	0.7		
R _f ⁺	-	0.3	-	0.6	4.5	-		
EBE	15	20	15	15	15	13		
Temp.	45°C	50°C	30°C	30°C	30°C	85°C		

Electron impact mass spectra of the compounds $C_6H_5Hg(R_f)$ (relative intensity in %; electron beam energy, EBE, in eV)

Table	3
-------	---

	$C_n F_{2n+1}$						
	CF ₃	C ₂ F ₅	C ₃ F ₇	C ₄ F ₉	C ₆ F ₁₃		
$\delta(CF_3)$	- 38.1	- 84.0	- 80.4	- 81.2	-81.3		
$\delta(\alpha - CF_2)$		-112.1	-110.6	- 109.7	- 109.6		
$\delta(\beta - CF_2)$			-123.9	-119.9	- 119.3		
$\delta(\gamma - CF_2)$				-125.8	-122.2		
$\delta(\delta - CF_2)$					-123.2		
$\delta(\epsilon - CF_2)$					-126.6		
$^{2}J(^{199}Hg^{-19}F)$	1006	640	631	628	626		
$^{3}J(^{199}\text{Hg}-^{19}\text{F})$		50	106	113	114		

¹⁹F NMR data for C₆H₅HgC_nF_{2n+1} (n = 1-4 or 6) (CH₂Cl₂; external lock: acetone- d_6 ; δ in ppm; J in Hz)

molecular ion, $C_6H_5Hg^+$ and $C_6H_5^+$. In all cases low intensity peaks of $(C_6H_5)_2Hg^+$ are also observed. We assume that diphenylmercury is formed during the evaporation in the mass spectrometer because all samples were analytically pure and the amount of formation of the $(C_6H_5)_2Hg$ seems to be temperature-dependent. Low-energy spectra recorded at various temperatures show a significant increase of the $(C_6H_5)_2Hg^+$ intensity with increasing temperature in the case of $C_6H_5HgCF_3$ studied as an example. Only in the spectra of the higher perfluoroorgano group detected. We thus assume that all the compounds undergo initial fragmentation by loss of the perfluoroorgano group.

The intensity of the molecular ions of the perfluoroalkyl derivative decreases with increasing chain length, and the intensities of the $Hg(R_f)^+$ and R_f^+ peaks correspondingly increase. This feature may be referred to the lower stability of the higher perfluoroalkyl derivatives.

The NMR spectra of $C_6H_5HgR_f$

The ¹⁹F NMR resonances of the derivatives $C_6H_5HgC_nF_{2n+1}$ (n = 2-4 or 6) lie between -80 ppm and -130 ppm upfield from external CCl₃F (see Table 3). The CF₃ group of the perfluoroalkyl chain gives a resonance at ca. -81 ppm and the α -CF₂ group at ca. -110 ppm. The signals of the α - and β -CF₂ groups have ¹⁹⁹Hg satellites with typical couplings, ²J(¹⁹⁹Hg-¹⁹F), of ca. 630 Hz. The pentafluoroethyl derivative shows a ³J(¹⁹⁹Hg-¹⁹F) coupling of 50 Hz, whereas for the longerchain derivatives couplings of ca. 110 Hz are observed. All the data are in good agreement with those previously published [8,9,11].

The ¹⁹⁹Hg{¹H} NMR spectra show the expected splitting. The chemical shifts (see Table 4 and Fig. 1) show variations similar to those observed for the corresponding bis(perfluoroalkyl)cadmium complexes $Cd(R_f)_2 \cdot 2D$ [29].

Experimental

NMR spectra. Bruker FT NMR spectrometer AC 200; ¹⁹F NMR: 188.3 MHz, ¹³C NMR: 50.4 MHz. Bruker FT NMR spectrometer AMX 300; ¹⁹⁹Hg{¹H} NMR: 53.5 MHz. Standards: CCl₃F (ext., ¹⁹F), Si(CH₃)₄ (ext., ¹³C), Hg(CH₃)₂ neat (ext.,

	R _f						
	CF ₃ ^a	C ₂ F ₅	C ₃ F ₇	C ₄ F ₉	C ₆ F ₁₃	C ₆ F ₅ ^b	
$\overline{\delta(^{199}\text{Hg})}$	- 1140	- 1124	- 1131	-1142	- 1153	- 798	
$^{2}J(^{199}\text{Hg}-^{19}\text{F})$	1006	638	628	637	626		
$^{3}J(^{199}\text{Hg}-^{19}\text{F})$		47	106	114	114	342	
$^{4}J(^{199}\text{Hg}-^{19}\text{F})$			78	54	35	59	

Table 4 ¹⁹⁹Hg¹H} NMR data for C₆H₅Hg(R_f) (CH₂Cl₂; external lock: acetone- d_6 ; δ in ppm; J in Hz)

 $a^{-6} \delta(^{199}\text{Hg}) - 1160 \text{ ppm in CDCl}_3 [30]. b^{-6} \delta(^{199}\text{Hg}) - 829 \text{ ppm in CH}_2 Cl_2 [31].$

¹⁹⁹Hg). A negative chemical shift denotes a resonance appearing to low frequency (high field) of the reference compound.

Mass spectra. Varian MAT CH 5 (modified). Ions containing Hg refer to 202 Hg (natural abundance 29.80%); conversion to monoisotopic relations by the coefficient 100/29.80.

Other measurements. Fluorine analysis was as described in ref. 32. Melting points were obtained with a HWS Mainz SG 2000 apparatus, open glass capillaries, and conductivity measurements with a Metrohm 660 Conductometer.

Preparations

All reactions were carried out under dry nitrogen in Schlenk tubes. Solvents were purified and dried by standard methods. $Cd(CF_3)_2 \cdot 2CH_3CN$, $Cd(C_2F_5)_2 \cdot 2CH_3CN$ and $Cd(C_6F_5)_2 \cdot 2$ DMF were prepared as described previously [26,33]. Uncomplexed $Cd(C_3F_7)_2$ and $Cd(C_4F_9)_2$ were prepared in the way described for $Cd(C_6F_{13})_2$ [26]; $Cd(CH_3)_2$ and CF_3I were prepared according to refs. 34 and 35 respectively. All other chemicals were used as supplied by Aldrich (C_6H_5HgCl , C_2F_5I , C_6F_5I), Merck-Schuchardt (C_4F_9I , $C_6F_{13}I$), and Fluorochem/ABCR (C_3F_7I).

Preparation of $C_6H_5Hg(R_f)$

To a solution of C_6H_5 HgCl in the appropriate solvent at room temperature were added the solid Cd(R_f)₂ compounds. The mixtures were stirred for several

Fig. 1. The dependence of the ¹⁹⁹Hg NMR chemical shifts of $C_6H_5Hg(C_nF_{2n+1})$ (n = 1-4 or 6) on the length of the perfluoroalkyl chain.

Rf	C ₆ H ₅ HgC		$Cd(R_f)_2$		Solvent		-	Yield	Fluorine analysis	M.p.
	50	mmol	30	mmol		(JE	(p)	(%)	(%) a	(C)
CF3	4.66	14.90	2.47	7.45	pyridine	40	4	94 b	16.2 (16.4)	142-143
C_2F_5	2.03	6.48	1.39	3.24	pyridine	10	4	81^{b}	24.7 (23.9)	138
C_3F_7	0.25	0.80	0.18	0.40	pyridine	5	7	30 c	29.3 (29.8)	74- 75
C_4F_9	0.99	3.18	0.87	1.59	acetone	15	ŝ	43 ^c	34.9 (34.4)	71-72
C_6F_{13}	1.59	5.10	1.91	2.55	acetone	15	ŝ	40 °	41.6 (41.4)	51-53
$C_{6}F_{5}$	1.74	5.56	1.64	2.78	pyridine	10	5	74 b		$160-161 \ ^{d}$
^a The value	s in brackets	are calculated.	^b Purified	by extraction w	vith n-hexane.	^c Purified by	sublimation.	^d C ₆ H ₅ H ₈ C	${}_{6}F_{5}$ contained Hg(C $_{6}F_{5}$).	2 as an impurity up to

compounds	
$Cd(R_f)_2$	
5HgCl with	
s of C ₆ H ₅	
Reaction	

Table 5

5% (determined from the ¹⁹F NMR spectra).

• • • • • • • • • •

i

• • •

I I ļ ï

í

I

days and completion of the reaction established by ¹⁹F NMR spectroscopy. The precipitate was filtered off and washed several times with the appropriate solvent. The filtrate and the washing liquors were combined. The solvent was distilled off at room temperature under reduced pressure and the residue purified by repeated extraction with n-hexane or by vacuum sublimation at $30-40^{\circ}$ C. Experimental details, analytical data, and yields are summarized in Table 5; the ¹⁹F NMR data for the perfluoroalkyl derivatives are listed in Table 3 and the ¹⁹⁹Hg{¹H} NMR data in Table 4. Some mass spectral data are listed in Table 2.

¹³C{¹H} NMR spectrum of C₆H₅HgCF₃ (CDCl₃, 20°C) δ (CF₃) 174.3 ppm, q, ¹J(¹⁹F-¹³C) = 358.0 Hz; ¹J(¹⁹⁹Hg-¹³C) = 1930 Hz; δ (1-C) 157.7 ppm, q, ³J(¹⁹F-¹³C) = 15 Hz; ¹J(¹⁹⁹Hg-¹³C) = 1474 Hz; δ (2, 6-C) 128.9 ppm, s, ²J(¹⁹⁹Hg-¹³C) = 125 Hz; δ (3, 5-C) 137.3 ppm, s, ³J(¹⁹⁹Hg-¹³C) = 95 Hz; δ (4-C) 129.4 ppm, s, ⁴J(¹⁹⁹Hg-¹³C) = 21 Hz.

¹⁹F NMR spectrum of C₆H₅HgC₆F₅ (CH₂Cl₂, 20°C) δ (2,6–F) – 120.6 ppm, m, ³J(¹⁹⁹Hg-¹⁹F) = 342.2 Hz; δ (3,5–F) – 160.9 ppm, m; δ (4–F) – 154.0 ppm, m.

Acknowledgments

Financial support by the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- 1 E. Frankland, Ann. Chem., 85 (1853) 361.
- 2 H.J. Emeléus and R.N. Haszeldine, J. Chem. Soc., (1949) 2948 and 2953.
- 3 D. Seyferth and S.P. Hopper, J. Organomet. Chem., 26 (1971) C62.
- 4 L.M. Yagupol'skii, V.I. Popov, N.V. Kondratenko and E.N. Konovalov, Zh. Org. Khim., 10 (1974) 277.
- 5 D. Sevferth, S.P. Hopper and G.J. Murphy, J. Organomet. Chem., 46 (1972) 201.
- 6 R.D. Chambers, G.E. Coates, J.G. Livingstone and W.K.R. Musgrave, J. Chem. Soc., (1962) 4367.
- 7 H.B. Albrecht, G.B. Deacon and M.J. Tailly, J. Organomet. Chem., 70 (1974) 313.
- 8 J.-P. Zissis, P. Moreau and A. Commeyras, J. Fluorine Chem., 19 (1981/82) 71.
- 9 P. Calas, P. Moreau and A. Commeyras, J. Fluorine Chem., 12 (1978) 67.
- 10 P. Calas, P. Moreau and A. Commeyras, J. Electroanal. Chem., 89 (1978) 373.
- 11 P. Calas, P. Moreau and A. Commeyras, J. Electroanal. Chem., 78 (1977) 271.
- 12 J. Banus, H.J. Emeléus and R.N. Haszeldine, J. Chem. Soc., (1950) 3041.
- 13 J.E. Connett and G.B. Deacon, J. Chem. Soc. (C), (1966) 1058.
- 14 J.E. Connett, A.G. Davies, G.B. Deacon and J.H.S. Green, J. Chem. Soc. (C), (1966) 106.
- 15 I.L. Knunyants, Y.F. Kommissarov and B.L. Dyatkin, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 943.
- 16 e.g. (a) C.G. Krespan, J. Org. Chem., 25 (1960) 105; (b) W.T. Miller, Jr. and M.R. Freedman, J. Am. Chem. Soc., 85 (1963) 180; (c) P.E. Aldrich, E.G. Howard, W.J. Linn, W.J. Middleton and W.H. Sharkey, J. Org. Chem., 28 (1963) 184.
- 17 E.K.S. Liu and R.J. Lagow, J. Am. Chem. Soc., 98 (1976) 8270.
- 18 D. Naumann and H. Lange, J. Fluorine Chem., 23 (1983) 37.
- 19 D. Seyferth and S.P. Hopper, J. Organomet. Chem., 44 (1972) 97.
- 20 R.J. Lagow, L.L. Gerchman, R.A. Jacob and J.A. Morrison, J. Am. Chem. Soc., 97 (1975) 518.
- 21 M. Schmeisser, R. Walter and D. Naumann, Z. Anorg. Allg. Chem., 464 (1980) 233.
- 22 B.L. Dyatkin, S.R. Sterlin, B.I. Martynov, E.I. Mysov and I.L. Knunyants, Tetrahedron 27 (1971) 2843.
- 23 B.I. Martynov, S.R. Sterlin and B.L. Dyatkin, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 1642.
- 24 H. Lange and D. Naumann, J. Fluorine Chem., 27 (1985) 309.

- 25 D. Naumann and W. Tyrra, J. Organomet. Chem., 334 (1987) 323.
- 26 D. Naumann, K. Glinka and W. Tyrra, Z. Anorg. Allg. Chem., 594 (1991) 95.
- 27 R.G. Pearson, Inorg. Chem., 27 (1988) 734 and refs. cited therein.
- 28 D. Naumann, W. Strauss and W. Tyrra, J. Organomet. Chem., 407 (1991) 1.
- 29 W. Gombler, H. Lange and D. Naumann, J. Magn. Reson., 89 (1990) 10.
- 30 P.L. Goggin, R.J. Goodfellow, D.M. McEwan, A.J. Griffiths and K. Kessler, J. Chem. Res. (S), (1974) 194.
- 31 A.P. Tupciauskas, N.M. Sergeyev, Yu.A. Ustynyuk and A.N. Kashin, J. Magn. Reson., 7 (1972) 124.
- 32 A.D. Campbell and P.A. Dawson, Mikrochimica Acta, (1983) 489.
- 33 H. Lange and D. Naumann, J. Fluorine Chem., 26 (1984) 1.
- 34 E. Krause, Chem. Ber., 50 (1917) 1813.
- 35 D. Naumann, W. Tyrra, B. Kock, W. Rudolph and B. Wilkes, Eur. Pat. 0 291 860 B1, 16.10.91.